If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3y + -3)(-5y2 + 5y + 1) = 0 Reorder the terms: (-3 + 3y)(-5y2 + 5y + 1) = 0 Reorder the terms: (-3 + 3y)(1 + 5y + -5y2) = 0 Multiply (-3 + 3y) * (1 + 5y + -5y2) (-3(1 + 5y + -5y2) + 3y * (1 + 5y + -5y2)) = 0 ((1 * -3 + 5y * -3 + -5y2 * -3) + 3y * (1 + 5y + -5y2)) = 0 ((-3 + -15y + 15y2) + 3y * (1 + 5y + -5y2)) = 0 (-3 + -15y + 15y2 + (1 * 3y + 5y * 3y + -5y2 * 3y)) = 0 (-3 + -15y + 15y2 + (3y + 15y2 + -15y3)) = 0 Reorder the terms: (-3 + -15y + 3y + 15y2 + 15y2 + -15y3) = 0 Combine like terms: -15y + 3y = -12y (-3 + -12y + 15y2 + 15y2 + -15y3) = 0 Combine like terms: 15y2 + 15y2 = 30y2 (-3 + -12y + 30y2 + -15y3) = 0 Solving -3 + -12y + 30y2 + -15y3 = 0 Solving for variable 'y'. Factor out the Greatest Common Factor (GCF), '3'. 3(-1 + -4y + 10y2 + -5y3) = 0 Ignore the factor 3.Subproblem 1
Set the factor '(-1 + -4y + 10y2 + -5y3)' equal to zero and attempt to solve: Simplifying -1 + -4y + 10y2 + -5y3 = 0 Solving -1 + -4y + 10y2 + -5y3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| tan(cos^-1(5/13)) | | sin(x)(2cos(x)+1)=0 | | 22/10=m/25 | | 4x^22+x-9=0 | | 8/x=24/6 | | 2(3)+8+5x=29 | | 32/5=64/n | | 2(5)+8+5x=29 | | 2x+3x=4x-3 | | 4n+5=3n-2 | | z^5+4z=0 | | 5+20-12=13 | | 9(3x-7)=-4 | | 0=3h^2+44h-6279 | | 6x-6+4=22 | | -109.3-t=183.6 | | 24=-4x+19 | | (2k+1)(k-2)=0 | | 2/3t=-40 | | -4.9x^2+24.5x+9.5=0 | | 4s-11=-2+7s | | 9x-22=18+x | | x^2-6x-6y-21=0 | | (2n-1)+(3n+11)=90 | | 0.3x^2-42x+1040=0 | | 6-3x+1=14-6x+2x | | 16f^12/2f^3 | | v=4/3(2^2)3.14 | | v=3.14(2^2)4/3 | | 26x+1+23x-2+16-4=180 | | x-1/x=35/x | | 10+5x-4x-8=31 |